
We study the single transverse spin asymmetries in the single inclusive particle production 
within the framework of the generalized parton model (GPM). By carefully analyzing the 
initial- and final-state interactions, we include the process-dependence of the Sivers 
functions into the GPM formalism. The modified GPM formalism has a close connection 
with the collinear twist-3 approach. Within the new formalism, we make predictions for 
inclusive        and direct photon productions at RHIC energies. Also we consider the Sivers 
asymmetry from the cross section for                            (w/ D’lesio, Murgia & Pisano).                                        
We find the predictions are opposite to those in the conventional GPM approach. 
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Spin Dependent Cross Section in GPM

In the so-called generalized parton model (GPM) approach developed by Anselmino and collaborators, the spin-

dependent one could be written as

Eγ
d∆σ

d3Pγ
=
αemαs

S

∑

a,b

∫

dxa

xa
d2kaT∆

N fDISa/A (xa, kaT )
1

2
S A · (P̂A × k̂aT )

×

∫

dxb

xb
d2kbT fb/B(xb, kbT )H

U
ab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û). (40)

Then the single transverse spin asymmetry AN is defined by the ration

AN = Eγ
d∆σ

d3Pγ

/

Eγ
dσ

d3Pγ
. (41)

In this approach, it has been assumed that the Sivers function in this process is the same as those measured in SIDIS

process. As we have shown in last section, this is not the case. One needs to take into account the process-dependence

of the Sivers function. With the process-dependence for the Sivers function, we propose a new formalism for the

spin-dependent cross section:

Eγ
d∆σ

d3Pγ
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αemαs

S

∑
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xa
d2kaT∆

N f
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2
S A · (P̂A × k̂aT )

×

∫

dxb

xb
d2kbT fb/B(xb, kbT )Hab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û), (42)

where ∆N f
ab→γ

a/A
(xa, kaT ) is the process-dependent Sivers function calculated in last section. Since they are directly

proportional to the Sivers function measured in SIDIS up to a prefactor, one could absorb this prefactor into the hard

part coefficient Hab→γ. By doing so, we end up with

Eγ
d∆σ

d3Pγ
=
αemαs

S

∑

a,b

∫

dxa

xa
d2kaT∆

N fDISa/A (xa, kaT )
1

2
S A · (P̂A × k̂aT )

×

∫

dxb

xb
d2kbT fb/B(xb, kbT )H

Sivers
ab→γ(ŝ, t̂, û)δ(ŝ + t̂ + û), (43)

where HSivers
ab→γ

are given by

HSiversqg→γq = e2q
N2c + 1

Nc(N2c − 1)

[

t̂

ŝ
+
ŝ

t̂

]

(44)

HSiversqq̄→γg = e2q
N2c + 1

N2c

[

t̂

û
+
û

t̂

]

(45)

Similarly for inclusive hadron production A + B → h + X, where the spin-averaged differential cross section can

be written as

Eh
dσ

d3Ph
=
α2s
S

∑

a,b,c

∫

dxa

xa
d2kaT fa/A(xa, kaT )

∫

dxb

xb
d2kbT fb/B(xb, kbT )

∫

dzc

z2c
Dh/c(zc)H

U
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (46)

The spin-dependent hard parts HU
ab→c

are calculated before, available in the literature. We list here for convenience.

HU
qq′→qq′ =

N2c − 1

2N2c

ŝ2 + û2

t̂2
(47)

HU
qq̄′→qq̄′ =

N2c − 1

2N2c

ŝ2 + û2

t̂2
(48)
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfab→c

a/A (xa, kaT )
1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (5)

in which a process-dependent Sivers function denoted as ∆Nfab→c
a/A (xa, kaT ) is used rather than that from SIDIS

∆NfSIDIS
a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.
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FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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carefully move the process-dependence of the Sivers function to the squared hard partonic scattering amplitude under
one-gluon exchange approximation, and these modified hard parts are exactly same as those in the twist-3 collinear
approach in terms of Mandelstam variables ŝ, t̂, û (see [15]). This suggests a close connection between this modified
GPM formalism and the twist-3 approach. However, it is important to mention that Mandelstam variables ŝ, t̂, û are
themselves a function of partonic intrinsic transverse momentum in the GPM approach. We comment on these issues
at the end of Section II. The rest of the paper is organized as follows: In Sec. II, we introduce the GPM approach,
and discuss how to formulate the initial- and final-state interaction effects. In Sec. III, we estimate the asymmetry
for inclusive pion and direct photon production at RHIC energy, and compare our predictions with those from the
conventional GPM approach. We conclude our paper in Sec. IV.

II. INITIAL- AND FINAL-STATE INTERACTIONS IN SINGLE INCLUSIVE PARTICLE
PRODUCTION

In this section, we introduce the basic ideas and assumptions of the GPM approach. Then we discuss how to
formulate the initial- and final-state interactions for single inclusive particle production. Within the same framework
of GPM approach, we thus derive a new formalism for the SSAs of single inclusive particle production, with the
process-dependence of the Sivers function taken into account.

A. Generalized Parton Model

Generalized parton model was introduced by Feynman and collaborators [22], as an generalization of the usual
collinear pQCD approach. It was adapted and used to describe the SSAs for inclusive particle production recently
[17–19], which has had phenomenological success [18]. According to this approach, for the inclusive production of
large PhT hadrons (or photons), A↑(PA) + B(PB) → h(Ph) + X , the differential cross section can be written as

Eh
dσ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT fa/A↑(xa,#kaT )

∫
dxb
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d2kbT fb/B(xb, kbT )

∫
dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (1)

where S = (PA + PB)2, fa/A↑(xa,#kaT ) is the TMD parton distribution functions with kaT the intrinsic transverse
momentum of parton a with respect to the light-cone direction of hadron A, and Dh/c(zc) is the fragmentation
function. Since we will only consider the SSAs generated from the parton distribution functions in this paper, we
have neglected the kT -dependence in the fragmentation function. HU

ab→c(ŝ, t̂, û) is the hard part coefficients with ŝ, t̂, û
the usual partonic Mandelstam variables. Eq. (1) can also be used to describe direct photon production, in which one
replaces the fragmentation function Dh/c(zc) by δ(zc − 1), and α2

s by αemαs.
To study the SSAs, the PDFs fa/A↑(xa,#kaT ) in the transversely polarized hadron A can be expanded as [17–19]

fa/A↑(xa,#kaT ) = fa/A(xa, kaT ) +
1
2
∆Nfa/A(xa, kaT )SA · (P̂A × k̂aT ), (2)

where SA is the transverse polarization vector, P̂A and k̂aT are unit momentum vectors, fa/A(xa, kaT ) is the spin-
averaged PDFs, and ∆Nfa/A(xa, kaT ) is the Sivers functions. Thus in GPM approach, the spin-averaged differential
cross section is given by Eq. (1) with fa/A↑(xa,#kaT ) replaced by fa/A(xa, kaT ), while the spin-dependent cross section
is given by

Eh
d∆σ

d3Ph
=

α2
s

S

∑

a,b,c

∫
dxa

xa
d2kaT ∆Nfa/A(xa, kaT )

1
2
SA · (P̂A × k̂aT )

∫
dxb

xb
d2kbT fb/B(xb, kbT )

×
∫

dzc

z2
c

Dh/c(zc)HU
ab→c(ŝ, t̂, û)δ(ŝ + t̂ + û), (3)

and the SSA is given by the ratio,

AN ≡ Eh
d∆σ

d3Ph

/
Eh

dσ

d3Ph
. (4)

As stated in the introduction, there are two assumptions in the GPM approach: one is that the spin-averaged
and spin-dependent differential cross sections can be factorized in terms of TMD PDFs as in Eqs. (1) and (3),
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and the other one is that the Sivers functions is assumed to be universal and equal to those in SIDIS process,
∆Nfa/A(xa, kaT ) = ∆NfSIDIS

a/A (xa, kaT ). In this paper, we will still work within the framework of the GPM approach,
in other words, we will assume the TMD factorization is a reasonable phenomenological starting point. However, at
the same time, we will take into account the initial- and final-state interactions. Since both ISIs and FSIs contribute
for single inclusive particle production, in principle the Sivers functions in inclusive particle production in hadronic
collisions should be different from those probed in SIDIS process. We thus need to carefully analyze these ISIs and
FSIs for all the partonic scattering processes relevant to single inclusive particle production to determine the proper
Sivers functions to be used in the formalism. In other words, this new formalism will be
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a/A (xa, kaT ) is used rather than that from SIDIS
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a/A (xa, kaT ) as in the conventional GPM approach.

B. Initial- and final-state interactions

In this subsection, we will discuss how to formulate the initial- and final-state interactions. The crucial point is
that the existence of the Sivers function in the polarized nucleon relies on the initial- and final-state interactions
between the struck parton and the spectators from the polarized nucleon through the gluon exchange. Thus by
analyzing these interactions, one can determine the proper Sivers function ∆Nfab→c

a/A (xa, kaT ) to be used for the
corresponding partonic scattering ab → cd. We start with the classic examples: the final-state interaction in SIDIS,
and the initial-state interaction for DY process. To the leading order (one-gluon exchange), they are shown in Fig. 1.
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FIG. 1: Final-state interaction in SIDIS (left) and initial-state interaction in DY (right) processes.

For the SIDIS process e($)+p(PA, ST ) → e($′)+h+X with Q2 = −q2 = −($′−$)2, under the eikonal approximation,
the final-state interaction (as in Fig. 1(left)) leads to

ū(pc)(−ig)γ−T a i(p/c − k/)
(pc − k)2 + iε

≈ ū(pc)
[

g

−k+ + iε
T a

]
, (6)

where the gamma matrix γ− appears because of the interaction with a longitudinal polarized gluon (∼ A+), and a is
the color index for this gluon. The eikonal part (the term in the bracket) is exactly the first order of the gauge link
in the definition of a gauge-invariant TMD PDFs in SIDIS process, see Fig. 2(a). The imaginary part of the eikonal
propagator 1/(−k+ + iε) provides the necessary phase for the SSAs.

)

-".

!

-,.

+ "

" &

(

!

#$%

!

FIG. 2: Sivers function in SIDIS process in the first non-trivial order (one-gluon exchange).
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fq/A↑(x,!kT ) = fq/A(x, k2
T ) + 1
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T )!S · (P̂ × !kT )



One gluon exchange approx for ISI and FSI
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On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to

v̄(pb)(−ig)γ−T a −i(p/b + k/)
(pb + k)2 + iε

≈ v̄(pb)
[

g

−k+ − iε
T a

]
, (7)

which has the same real part and opposite imaginary part compared to SIDIS process. This leads to the fact that the
spin-averaged TMD PDFs are the same, while the Sivers function will be opposite in SIDIS and DY processes. This
conclusion can be generalized to all order, and has been proven to be true using parity and time-reversal invariant
arguments [6, 8].
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FIG. 3: Initial- and final-state interactions in qq′ → qq′: (a) initial-state interaction, (b) final-state interaction, (c) and (d) the
final-state interactions for the unobserved particle.

Now let us turn to the case for inclusive single particle production in hadronic collisions, in which 2 → 2 partonic
scattering is the leading order contribution, where both initial- and final-state interactions contribute. We will
start with a simple example: qq′ → qq′. Here the initial-quark q is from the polarized nucleon, and the final-quark q
fragments to the final-state hadron. The one-gluon exchange approximation for the initial- and final-state interactions
are shown in Fig. 3. Under the eikonal approximation, for initial-state interaction Fig. 3(a),

i(p/b + k/)
(pb + k)2 + iε

(−ig)γ−T aū(pb) =
[

−g

−k+ − iε
T a

]
ū(pb), (8)

Likewise, for the final-state interaction Fig. 3(b), we have
[

g

−k+ + iε
T a

]
. (9)

Thus both interactions contribute to the phase −iπδ(k+), which is the same as in the SIDIS process as in Eq. (6).
However, they will have different color flow. To extract the extra color factors for Fig. 3(a) and (b) as compared to
the usual qq′ → qq′ without gluon attachments, we resort to the method developed in [14, 15, 25]. We obtain the
color factors CI (CFc) for initial (final)-state interaction

CI = − 1
2N2

c

, CFc = − 1
4N2

c

, (10)

while the color factors for unpolarized cross section is given by

Cu =
N2

c − 1
4N2

c
. (11)

In other words, the Sivers function in qq′ → qq′ should be the one as shown in Fig. 4, which comes from the sum of the
ISIs and FSIs with the corresponding color factors CI and CFc respectively. Thus by comparing the imaginary part
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On the other hand, for DY process, the initial-state interaction (as in Fig. 1(right)) leads to
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[

−g

−k+ − iε
T a

]
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Formula: Two partonic channel contribute to direct photon production:
• qg → γq:
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ISI drives result
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We study the azimuthal asymmetric distribution of hadrons inside a high energy jet in the single-
transverse polarized nucleon-nucleon scattering, coming from the Collins effect multiplied by the quark
transversity distribution. We argue that the Collins function in this process is the same as that in the semi-
inclusive deep inelastic scattering. The experimental study of this process will provide us with important
information on the quark transversity distribution and test the universality of the fragmentation functions.
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I. Introduction.—Quark transversity distribution is one
of the most important quark distributions of nucleon that
remains unknown [1–3]. It is a quark distribution when the
nucleon is transversely polarized. Unlike the polarized
quark distribution in a longitudinal polarized nucleon, the
quark transversity is difficult to measure because it is a
chiral-odd distribution [2]. For example, it cannot be
studied in the inclusive deep inelastic scattering (DIS),
which can only probe the chiral-even parton distributions.
The Drell-Yan lepton pair production in pp scattering can
be used to study the quark transversity distributions [1,2],
but these have limited access to them at the collider ex-
periment at RHIC [4].

There have been suggestions to probe the quark trans-
versity from other processes [3]. For example, in Ref. [5], it
was proposed to study the quark transversity distributions
from the semi-inclusive hadron production in the DIS
(SIDIS) process, which can couple with another chiral-
odd fragmentation function, the so-called Collins fragmen-
tation function, to lead to a nonzero azimuthal single spin
asymmetry (SSA). This SSA has been studied by the
HERMES Collaboration at DESY [6], and a very interest-
ing result on the Collins fragmentation function was found
[7]. The Collins effect in the back-to-back two-hadron
production in e!e" annihilation has also been explored
by the BELLE Collaboration [8], and a first attempt to
extract the quark transversity distribution from the com-
bined analysis of these two experiments has been reported
recently [9]. The interference fragmentation function for
two-hadron production has also been suggested to study
quark transversity distribution in DIS and hadronic reac-
tions [10,11].

In this Letter, we investigate the possibility of exploring
the quark transversity distribution in pp collision at RHIC
by studying the azimuthal asymmetric distribution of had-
rons inside a jet [10,12]. We are interested in the hadron
production from the fragmentation of a transversely polar-
ized quark, which inherits transverse spin from the incident
nucleon through transverse-spin transfer in the hard par-
tonic scattering processes [10,13]. As we show in Fig. 1,

we will study the process,

 p#PA; S?$ ! p#PB$ ! jet#PJ$ ! X ! H#Ph$ ! X; (1)

where a transversely polarized proton with momentum PA
scatters on another proton with momentum PB, and pro-
duces a jet with momentum PJ (transverse momentum P?
and rapidity y1 in the laboratory frame). The three mo-
menta of PA, PB, and PJ form the so-called reaction plane.
Inside the produced jet, the hadrons are distributed around
the jet axis, and we are interested in studying the azimuthal
distribution of a particular hadron H, whose transverse
momentum PhT relative to the jet axis will define an
azimuthal angle with the reaction plane: !h, as shown in
Fig. 1. We also define the azimuthal angle of the transverse
polarization vector of the incident polarized proton: !s.

The leading order contribution to the jet production in
pp collision comes from 2 ! 2 subprocesses, where two
jets are produced back-to-back in the transverse plane. For
the reaction process of (1), one of the two jets shall frag-
ment into the final observed hadron. In this Letter, we study
the physics in the kinematic region of PhT % P?.
Following [14], we assume a factorization for this process,
where we can separate the jet production from the hadron
fragmentation. From our calculations, we find that there
exists a correlation between the above two azimuthal an-
gles !h and !s, coming from the quark transversity multi-
plied with the Collins fragmentation function. The study of
this azimuthal asymmetry will provide us with important
information on the quark transversity distributions, and
will also provide a crucial test for the universality of the

FIG. 1 (color online). Illustration of the kinematics for the
azimuthal distribution of hadrons inside a jet in pp scattering.
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Azimuthal asymmetries for hadron distributions inside a jet in hadronic collisions
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Using a generalized parton model approach including spin and intrinsic parton motion effects, and

assuming the validity of factorization for large-pT jet production in hadronic collisions, we study the

azimuthal distribution around the jet axis of leading unpolarized or (pseudo)scalar hadrons, namely pions,

produced in the jet fragmentation process. We identify the observable leading-twist azimuthal asymme-

tries for the unpolarized and single-polarized case related to quark and gluon-originated jets. We account

for all physically allowed combinations of the transverse momentum–dependent (TMD) parton distribu-

tion and fragmentation functions, with special attention to the Sivers, Boer-Mulders, and transversity

quark distributions, and to the Collins fragmentation function for quarks (and to the analogous functions

for gluons). For each of these effects we evaluate, at central and forward rapidities and for kinematical

configurations accessible at BNL-RHIC, the corresponding potentially maximized asymmetry (for !þ

production), obtained by saturating natural positivity bounds (and the Soffer bound for transversity) for

the distribution and fragmentation functions involved and summing additively all partonic contributions.

We then estimate, for both neutral and charged pions, the asymmetries involving TMD functions for which

parametrizations are available. We also study the role of the different mechanisms, and the corresponding

transverse single-spin asymmetries, for large-pT inclusive-jet production.

DOI: 10.1103/PhysRevD.83.034021 PACS numbers: 13.88.+e, 12.38.Bx, 13.85.Ni, 13.87.Fh

I. INTRODUCTION

Transverse single-spin and azimuthal asymmetries in
high-energy hadronic reactions have raised a lot of interest
in the last years (see, e.g., Refs. [1,2] and references
therein). Huge spin asymmetries have been measured in
the inclusive forward production of pions in high-energy
pp collisions at moderately large transverse momentum.
The general trend of the early pioneer measurements of the
E704 Collaboration at Fermilab [3,4] has been recently
confirmed at much larger center-of-mass (c.m.) energies at
the Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Laboratories (BNL) in similar kinematical con-
figurations [5,6]. A surprisingly large transverse polariza-
tion of! hyperons produced in the forward region was also
measured in unpolarized pp, pN fixed-target experiments
(see, e.g., Ref. [7]). In this case, too, it will hopefully be
possible in the near future to check if this intriguing effect
survives at the much larger energies reachable at RHIC and
at the Large Hadron Collider (LHC) at CERN. Similar
effects, leading to azimuthal asymmetries both in the
polarized and unpolarized case, have been measured in
Drell-Yan (DY) processes [8,9], in semi-inclusive deeply
inelastic scattering (SIDIS) [10–13], and in hadron-pair
production in eþe" collisions [14,15].

These results cannot be explained at leading-twist
(LT) approximation in the usual collinear approach of

perturbative QCD (pQCD), based on factorization theorems,
to inclusive particle production in hadronic collisions. Here
collinear means that intrinsic parton motion is neglected in
the hard scattering processes and integrated over up to the
large energy scale in the soft functions involved. On the
contrary, at least in the kinematical regimes under consid-
eration at RHIC, collinear next-to-leading order (NLO)
pQCD gives a fair account of unpolarized cross sections
(see, e.g., Refs. [16,17]).
Two different main theoretical approaches have been pro-

posed in the framework of perturbative QCD in order to
account for these measurements. One is the so-called twist-
three collinear approach,which generalizes the leading-order
(LO) collinear framework with the inclusion of higher-twist
quark-gluon correlations [18–20]. This involves a new class
of universal nonperturbative twist-three quark-gluon distri-
bution and fragmentation functions that need to be modeled
by fitting experimental data. Another formalism, which
will be adopted in this paper, is the so-called transverse
momentum–dependent (TMD) approach, which takes into
account spin and intrinsic parton motion effects.
Although the large single-spin asymmetries (SSAs) of

interest here were originally observed in single inclusive
particle production in hadronic collisions, it is now clear
that from the theoretical point of view these are not the
cleanest processes to consider. First of all, these SSAs are
twist-three effects in a series expansion in inverse powers of
the large energy scale (here, the transverse momentum of
the observed single hadron or jet). Several competing
mechanisms can therefore play a role and mix up.
Moreover, in the TMD formalism factorization has not yet
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same as Kouvaris,Qiu , Vogelsang, and Yuan PRD 2006

• Twist 3 and twist 2 approach connection

we have another term ....comes from 

Implementing a      expansion collinear twist 
three expression emerges      

Eh
d∆σ

d3Ph
=

α2
s

s

∑

abc

∫
dzc

z2
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Dh/c(zc)
εPhST nn̄

zcũ

1
x

(TF (x, x)− x
d

dx
TF (x, x))

×
∫

dxb

xb
fb/B(xb)

∫
HInc

ab→c(s̃, t̃, ũ)
1

xbs + T/zc
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2.4. Connection to the twist-3 collinear factorization formalism

As pointed out in the last subsection, it is the linear in kaT dependence from the rest of the integral in Eq. (20) that contributes to the
asymmetry. We thus make an expansion and keep only the linear in kaT terms. We will show that the leading term in this expansion has
a close connection to the twist-3 collinear factorization formalism.

We start by specifying the partonic kinematics. Keeping the linear in kaT terms and dropping all the kbT -dependence we have pµ
a ≈

xa P
µ
A + kaT and pµ

b ≈ xb P
µ
B , thus

ŝ ≈ xaxb S, t̂ ≈ xa
zc

T − 2PhT · kaT
zc

, û = xb
zc

U . (36)

Thus we can write the δ-function as

δ(ŝ + t̂ + û) = 1
xb S + T /zc

δ

(
xa − x− 2PhT · kaT

zcxb S + T

)
where xa = x+ 2PhT · kaT

zcxb S + T
, (37)

and x = −xbU/(zcxb S + T ) is independent of kaT . Now performing the integrate over xa in Eq. (20) and using the δ-function we get,

Eh
d"σ

d3Ph
= α2

s

S

∑

a,b,c

∫
d2kaT

εkaT S Ann̄

M
1
xa

f ⊥a,SIDIS
1T

(
xa,k2aT

)∫
dxb
xb

fb/B(xb)

×
∫

dzc
z2c

Dh/c(zc)H
Inc
ab→c(ŝ, t̂, û)

1
xb S + T /zc

∣∣∣∣
xa=x+ 2PhT ·kaT

zc xb S+T

. (38)

After replacing xa as above, one has

ŝ = s̃ − s̃
ũ
2PhT · kaT /zc, t̂ = t̃ + s̃

ũ
2PhT · kaT /zc, û = ũ, (39)

where s̃ = xxb S , t̃ = xT /zc , ũ = xbU/zc and they are all independent of kaT . Note ŝ + t̂ + û = 0 implies s̃ + t̃ + ũ = 0. Now besides the
εkaT S Ann̄ , the linear in kaT contributions in Eq. (38) can come from, either (a) xa-dependence in f ⊥a,SIDIS

1T (xa,k2aT ), or (b) the ŝ- and t̂-
dependence in H Inc

ab→c(ŝ, t̂, û). This is because xa , ŝ, and t̂ are the only terms in Eq. (38) which depend linearly in kaT . We now make kaT
expansion one by one. First for contribution (a), since

∂xa
∂kα

aT
= 2PhTα

zcxb S + T
, (40)

to the linear term in kaT , we have

Eh
d"σ (a)

d3Ph
= α2

s

S

∑

a,b,c

∫
d2kaT

εkaT S Ann̄

M
kα
aT

2PhTα

zcxb S + T
d
dxa

[
f ⊥a,SIDIS
1T (xa,k2aT )

xa

]

xa→x

∫
dxb
xb

fb/B(xb)

×
∫

dzc
z2c

Dh/c(zc)H
Inc
ab→c(s̃, t̃, ũ)

1
xb S + T /zc

, (41)

where we have dropped all kaT dependence in H Inc
ab→c , thus replacing the kaT -dependent ŝ, t̂ , û by the kaT -independent s̃, t̃ , ũ in H Inc

ab→c .
Then using

∫
d2kaT k

β
aT k

α
aT f ⊥a,SIDIS

1T

(
xa,k2aT

)
= −1

2

∫
d2kaT gβα|&kaT |2 f ⊥a,SIDIS

1T

(
xa,k2aT

)
, (42)

and the relation between the Sivers function and the Efremov–Teryaev–Qiu–Sterman function Ta,F (x, x) [8],

Ta,F (x, x) = − 1
M

∫
d2kaT |&kaT |2 f ⊥a,SIDIS

1T

(
x,k2aT

)
, (43)

one can rewrite Eq. (41) as

Eh
d"σ (a)

d3Ph
= α2

s

S

∑

a,b,c

∫
dzc
z2c

Dh/c(zc)
ε PhT S Ann̄

zc ũ
1
x

[
Ta,F (x, x) − x

d
dx

Ta,F (x, x)
]∫

dxb
xb

fb/B(xb)H
Inc
ab→c(s̃, t̃, ũ)

1
xb S + T /zc

. (44)

We observe that this form is the same as that in the twist-3 collinear factorization approach. In particular, note that there is no kaT -
dependence in the hard part functions H Inc

ab→c . The difference to the twist-3 collinear factorization formalism [15] (as mentioned above) is
the extra factor (1 + û/t̂) accompanying the hard part functions associated with final-state interactions, see Eqs. (21) and (35).

However, in our modified GPM formalism, we have another contribution from (b), due to the kaT -dependence from H Inc
ab→c(ŝ, t̂, û) in

Eq. (38). Let’s now study this contribution (b). As is explicit in Eq. (39) û is independent of kaT while both ŝ and t̂ depend on kaT . Since
ŝ + t̂ + û = 0, one could then set t̂ = −ŝ − û in H Inc

ab→c and then expand only ŝ in kaT . That is,

∂

∂kα
aT

H Inc
ab→c(ŝ, t̂, û)

∣∣∣∣
kaT →0

= ∂ ŝ
∂kα

aT

∂

∂ ŝ
H Inc

ab→c(ŝ,−ŝ − û, û)

∣∣∣∣
kaT →0

= −2s̃
ũ

PhTα

zc

∂

∂ s̃
H Inc(s̃,−s̃ − ũ, ũ). (45)

kT



• Generalize GPM w/ color--can then perform 
global analysis

• Elephant in the room is break down of 
factorization for these processes  

• Appears to be connection between generalized 
parton model at twist 3 and twist 3 approach 

• Estimate mismatch-investigating LG  Z. Kang

• TMD fact. is assumed in both GPM and GGPM is 
this a reasonable pheno. approximation?

• Direct photon driven by same ISI factor as in DY

Conclusions 


